YES 0.768 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/FiniteMap.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule FiniteMap
  ((keysFM_LE :: FiniteMap () a  ->  ()  ->  [()]) :: FiniteMap () a  ->  ()  ->  [()])

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap b a = EmptyFM  | Branch b a Int (FiniteMap b a) (FiniteMap b a


  instance (Eq a, Eq b) => Eq (FiniteMap a b) where 

  foldFM_LE :: Ord b => (b  ->  a  ->  c  ->  c ->  c  ->  b  ->  FiniteMap b a  ->  c
foldFM_LE k z fr EmptyFM z
foldFM_LE k z fr (Branch key elt _ fm_l fm_r
 | key <= fr = 
foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise = 
foldFM_LE k z fr fm_l

  keysFM_LE :: Ord a => FiniteMap a b  ->  a  ->  [a]
keysFM_LE fm fr foldFM_LE (\key elt rest ->key : rest) [] fr fm


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\keyeltrestkey : rest

is transformed to
keysFM_LE0 key elt rest = key : rest



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule FiniteMap
  ((keysFM_LE :: FiniteMap () a  ->  ()  ->  [()]) :: FiniteMap () a  ->  ()  ->  [()])

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap b a = EmptyFM  | Branch b a Int (FiniteMap b a) (FiniteMap b a


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  foldFM_LE :: Ord b => (b  ->  c  ->  a  ->  a ->  a  ->  b  ->  FiniteMap b c  ->  a
foldFM_LE k z fr EmptyFM z
foldFM_LE k z fr (Branch key elt _ fm_l fm_r
 | key <= fr = 
foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise = 
foldFM_LE k z fr fm_l

  keysFM_LE :: Ord a => FiniteMap a b  ->  a  ->  [a]
keysFM_LE fm fr foldFM_LE keysFM_LE0 [] fr fm

  
keysFM_LE0 key elt rest key : rest


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule FiniteMap
  ((keysFM_LE :: FiniteMap () a  ->  ()  ->  [()]) :: FiniteMap () a  ->  ()  ->  [()])

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap a b) where 

  foldFM_LE :: Ord a => (a  ->  c  ->  b  ->  b ->  b  ->  a  ->  FiniteMap a c  ->  b
foldFM_LE k z fr EmptyFM z
foldFM_LE k z fr (Branch key elt vw fm_l fm_r
 | key <= fr = 
foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise = 
foldFM_LE k z fr fm_l

  keysFM_LE :: Ord b => FiniteMap b a  ->  b  ->  [b]
keysFM_LE fm fr foldFM_LE keysFM_LE0 [] fr fm

  
keysFM_LE0 key elt rest key : rest


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Cond Reductions:
The following Function with conditions
foldFM_LE k z fr EmptyFM = z
foldFM_LE k z fr (Branch key elt vw fm_l fm_r)
 | key <= fr
 = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
 | otherwise
 = foldFM_LE k z fr fm_l

is transformed to
foldFM_LE k z fr EmptyFM = foldFM_LE3 k z fr EmptyFM
foldFM_LE k z fr (Branch key elt vw fm_l fm_r) = foldFM_LE2 k z fr (Branch key elt vw fm_l fm_r)

foldFM_LE1 k z fr key elt vw fm_l fm_r True = foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
foldFM_LE1 k z fr key elt vw fm_l fm_r False = foldFM_LE0 k z fr key elt vw fm_l fm_r otherwise

foldFM_LE0 k z fr key elt vw fm_l fm_r True = foldFM_LE k z fr fm_l

foldFM_LE2 k z fr (Branch key elt vw fm_l fm_r) = foldFM_LE1 k z fr key elt vw fm_l fm_r (key <= fr)

foldFM_LE3 k z fr EmptyFM = z
foldFM_LE3 wv ww wx wy = foldFM_LE2 wv ww wx wy

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule FiniteMap
  (keysFM_LE :: FiniteMap () a  ->  ()  ->  [()])

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap b a = EmptyFM  | Branch b a Int (FiniteMap b a) (FiniteMap b a


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  foldFM_LE :: Ord c => (c  ->  b  ->  a  ->  a ->  a  ->  c  ->  FiniteMap c b  ->  a
foldFM_LE k z fr EmptyFM foldFM_LE3 k z fr EmptyFM
foldFM_LE k z fr (Branch key elt vw fm_l fm_rfoldFM_LE2 k z fr (Branch key elt vw fm_l fm_r)

  
foldFM_LE0 k z fr key elt vw fm_l fm_r True foldFM_LE k z fr fm_l

  
foldFM_LE1 k z fr key elt vw fm_l fm_r True foldFM_LE k (k key elt (foldFM_LE k z fr fm_l)) fr fm_r
foldFM_LE1 k z fr key elt vw fm_l fm_r False foldFM_LE0 k z fr key elt vw fm_l fm_r otherwise

  
foldFM_LE2 k z fr (Branch key elt vw fm_l fm_rfoldFM_LE1 k z fr key elt vw fm_l fm_r (key <= fr)

  
foldFM_LE3 k z fr EmptyFM z
foldFM_LE3 wv ww wx wy foldFM_LE2 wv ww wx wy

  keysFM_LE :: Ord a => FiniteMap a b  ->  a  ->  [a]
keysFM_LE fm fr foldFM_LE keysFM_LE0 [] fr fm

  
keysFM_LE0 key elt rest key : rest


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE1(wz6, @0, wz341, wz342, wz343, wz344, h) → new_foldFM_LE(wz341, new_foldFM_LE0(wz6, wz343, h), wz344, h)
new_foldFM_LE1(wz6, @0, wz341, wz342, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), wz344, h) → new_foldFM_LE1(wz6, wz3430, wz3431, wz3432, wz3433, wz3434, h)
new_foldFM_LE(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) → new_foldFM_LE1(new_keysFM_LE0(wz31, wz5, h), wz340, wz341, wz342, wz343, wz344, h)

The TRS R consists of the following rules:

new_keysFM_LE0(wz31, wz5, h) → :(@0, wz5)
new_foldFM_LE10(wz6, @0, wz341, wz342, wz343, wz344, h) → new_foldFM_LE2(wz341, new_foldFM_LE0(wz6, wz343, h), wz344, h)
new_foldFM_LE0(wz6, EmptyFM, h) → wz6
new_foldFM_LE0(wz6, Branch(wz3430, wz3431, wz3432, wz3433, wz3434), h) → new_foldFM_LE10(wz6, wz3430, wz3431, wz3432, wz3433, wz3434, h)
new_foldFM_LE2(wz31, wz5, EmptyFM, h) → new_keysFM_LE0(wz31, wz5, h)
new_foldFM_LE2(wz31, wz5, Branch(wz340, wz341, wz342, wz343, wz344), h) → new_foldFM_LE10(new_keysFM_LE0(wz31, wz5, h), wz340, wz341, wz342, wz343, wz344, h)

The set Q consists of the following terms:

new_foldFM_LE2(x0, x1, EmptyFM, x2)
new_foldFM_LE0(x0, EmptyFM, x1)
new_keysFM_LE0(x0, x1, x2)
new_foldFM_LE2(x0, x1, Branch(x2, x3, x4, x5, x6), x7)
new_foldFM_LE0(x0, Branch(x1, x2, x3, x4, x5), x6)
new_foldFM_LE10(x0, @0, x1, x2, x3, x4, x5)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldFM_LE3(@0, Branch(@0, wz31, wz32, wz33, wz34), h) → new_foldFM_LE3(@0, wz33, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: